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Compressible Flow: Turbulence at the Surface
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In a study of compressible flow, we have tracked the motion of particles that
float on a turbulent body of water. The second moment of longitudinal velocity
differences scales as in incompressible flow. However the separation {R?(¢)» of
particle pairs does not vary in time according to the Richardson—Kolmogorov
prediction {R*(¢)) oc t*. As expected, the self diffusion (d*(¢)) shows a cross-
over between ballistic motion {d*(¢)> oc t* at small ¢ and uncorrelated motion
{d*(t)) oc t in the longtime limit.

KEY WORDS: Turbulence; compressible; Richardson; diffusion; float; surface.

1. INTRODUCTION

New effects can appear in turbulent fluids when the incompressibility con-
straint V-v =0 is relaxed. If compressible, the fluid particles can momen-
tarily gather at some points and disappear from others. Moreover, the few
exact equations that hold for isotropic turbulence of incompressible fluids,
such as the Kolmogorov “4/5 law” can no longer be derived. Likewise,
doubt is now cast on the famous Richardson diffusion relation, according
to which the mean square separation (R?(¢)) of particle pairs varies as

(R* (1)) oc 1.

With incompressibility no longer there to aid in separating particle pairs,
they may have a tendency to coagulate or become trapped, at least
momentarily. This effect indeed appears in certain models of turbulence
and is also seen in computer simulations.-?

Strongly compressible flows might appear to be experimentally inac-
cessible except in supersonic flows. But there is a simple experimental
situation where compressible flows are easily achieved, namely at the
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surface (z=0) of an internally turbulent body of fluid. Small particles of
low density that float at the fluid-air interface, will sample the horizontal
components of the velocity v, =uv.(x,»,0,?),v,(x,y,0,¢). Unlike the
molecules of the bulk fluid, which can momentarily come up to the surface
and recede from it, the floaters cannot. The turbulence should not be so
strong as to generate surface waves of appreciable amplitude, a condition
that limits the maximum Reynolds number that can be reached. Of course,
the motion of floaters under conditions of appreciable wave motion is an
interesting subject in itself.® It should be noted that the compressibility
studied here is not due to particles with large inertia.*®

The water molecules form a divergence-free system at all values of z,
including z =0 and the floaters, which follow the water molecules at the
surface, obey the equation:

v (x,,0,1)/0x+0v,(x, y,0,1)/0y = —0v,(x, ,0,1)/0z.

The left hand side describes the two-dimensional compressibility of the
system of floating particles. Clearly, the underlying flow forces the right
hand side to be non-zero, making the two-dimensional divergence substan-
tially large. By covering the surface with floating particles of relatively high
surface density 6(x, y,t) and again photographically recording their
motion, one can study the properties of this passive scalar in the compress-
ible case.

Herein we summarize recently published experiments on this subject”
and report new measurements made on freshly cleaned surfaces. It turns
out that contaminants can seriously alter the surface flow. In addition, we
present an investigation of the turbulent diffusion of single particles on the
surface and the relative motion of particle pairs. It should be noted that the
motion of the floaters is not governed by the laws of 2D turbulence despite
their confinement to a two-dimensional plane. This is because particles
at the surface can exchange both kinetic energy and vorticity with those
in the bulk fluid below. In principle then, one does not even have the
Kolmogorov paradigm for guidance. It is therefore not clear whether the
surface should even adhere to three-dimensional turbulent statistics. For
example, there is no longer a dimensional argument to support the well-
known approximate result for D,(r), the nth moment for longitudinal
velocity differences on a scale 7, namely

D,(r) = {((v(x+1)=V(x)) - (r/1))") oc ()",

where € is the mean dissipation rate of the kinetic energy density.
Nevertheless the above scaling relation turns out to hold, at least approx-
imately, for D,(r).
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Theoretical predictions and computer simulations indicate that the
compressibility of the surface motion magnifies intermittency effects that
appear at higher values of n. The influence of strong compressibility on
turbulent flow is most easily understood by considering the problem in one
dimension.? For D =1, particles comprising the flow cannot pass each
other, making the compressibility ¥ maximal, where

€ =<(V-v)*>/{(0v;/0x;)*).

Here the indices denote the spatial coordinates and the brackets indicate an
average over the area of vector fields taken from a large number of tem-
porally uncorrelated measurements. Clearly € =1 for D= 1. For flow in
one dimension, the velocity can be described by a potential @, where
v(x, t) = 0®D(x, t)/0x. For turbulence, @ is a function of both space and
time. If the temporal fluctuations are sufficiently slow particles in the flow
will accumulate, at least temporarily, at points where & is a local
maximum. It turns out that local trapping can survive even in higher
dimensions. Compressible flows have been intensively studied for the
Kraichnan model, which is a simplification of true fluid flow obtained by
assuming that the velocity field is Gaussian and delta-correlated in time.
According to this model, trapping does not appear unless ¥ exceeds a
certain critical value €., which depends on the dimensionality d of the
system. For this work d=2 and €,=0.5.

2. THE EXPERIMENTS

The measurements were carried out in a square Plexiglas container 1 m
in size. The tank was typically filled with filtered water to a height of
30cm. In the initial experiments the turbulence was created by a large
vertically oscillating grid.”” In the most recent work the turbulence was
generated using a large (6 kW) variable speed pump to force water through
a planar grid of pipes placed 8 cm above the bottom of the tank and paral-
lel to the surface. Thirty seven twin jets are distributed evenly between the
junctions of the grid, and are free to rotate in the plane of the surface, but
below it by several centimeters. This complicated scheme was created to
maximize the Reynolds number while at the same time minimizing the
amplitude of the surface waves. Typically, the rms amplitude of the ran-
domly moving surface waves was of the order of 1 mm.

In the previously published experiments, the rms velocity fluctuations
of the surface particles was a third of that measured using particles moving
a cm or so below the surface. This large difference, which is not predicted
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by computer simulations or order-of-magnitude estimates,” was tracked
down to surface contamination. To increase the surface turbulence to the
value just beneath, it is necessary to continuously clean the surface, and to
keep the mean spacing of the particles sufficiently large. Surface cleaning
was accomplished by vacuuming the surface in the following way. A bottle
was placed in one corner of the tank with its mouth just below the waters
surface. Suction from the intakes of the pump were used to drain water
from the bottle while water from the tank continually entered the con-
tainer. The rate was adjusted so as to lower the water surface inside the
bottle to a constant height, below that of the tank. This technique pulls
water primarily from the surface, and is capable of cleaning an initially
dirty surface in a matter of minutes. Even air contaminants are sufficient to
create a stiff “skin” at the surface that impedes the motion of the floaters.
We do not fully understand this inter-particle interaction.

Measurements of D,(r) were made in the bulk and on the surface. In
the bulk we used polystyrene spheres having a diameter of 10 um. These
spheres have a specific gravity slightly larger than that of water, however
the turbulent fluctuations were sufficiently large to consider them neutrally
buoyant. In both the surface and bulk measurements the velocity field was
measured by tracking the particles with a high speed camera running at
several hundred Hz. The camera has a resolution of 1024 by 1024 pixels.
The imaged particles were larger than a pixel in order to permit sub-pixel
measurements of position, and velocity. The spatial resolution depends on
image size which was from 9 to 20 cm on a side. The spatial resolution for
single point measurements is typically a fraction of a mm. Illumination was
furnished by a pulsed Nd-Yag laser or a 5 W solid state laser.

Initially the floating particles, which ranged in diameter from 10 to
200 um, were mushroom spores, hollow glass spheres, or talc. The particles,
who’s density was relatively close to that of water, were held on the surface
by surface tension. In the new experiments we also used hollow glass
spheres having a specific gravity of 1/4 and a mean radius of 45 um.®
When introduced below the surface, these light particles quickly float to the
top so as to maintain a surface particle density large enough to measure the
velocity at all points in the camera’s view. This injection scheme eliminates
the depletion of particles in the up-welling regions.

At the maximum usable pump speeds, the integral scale of the turbu-
lence /, measured at the surface is roughly 3 cm, with the Taylor microscale
Reynolds number Re; = v, A/v greater than 100, where v is the kinematic
viscosity of water and A= \/ (v%,.)/{(dv(x)/dx)*), where the x-axis is
arbitrarily chosen in the horizontal plane. Though the turbulence is roughly
isotropic in that plane, all quoted results refer to angular averages.®
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3. RESULTS

The local clustering of particles moving in compressible flow at the
surface is clearly seen in Fig. 1. The image was made as follows: the pump
was switched on and a sufficiently large time was allowed to achieve a tur-
bulent steady state. Then the floating particles (which appear white in this
photograph) were initially and suddenly spread uniformly on the surface at
t=0. The image was captured at a time just a fraction of a second later.
After a second, the surface is nearly cleared of particles aside from thin
densely packed and irregularly-shaped ribbons. After several seconds all
particles have been forced to the perimeter of the container where the tur-
bulence is weak. The exposure time was 10 ms and Re, was approximately
150. The particles gather near points where the flow is locally downward,
forcing the floaters to accumulate in these regions. Because of this cluster-
ing effect, the number density 8(x, y, ¢) is difficult to measure and has yet
to be quantified. The particles in this image are too small to be resolved and
differ from those used in the quantitative measurements presented below.

Ll Ll 1
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Fig. 1. Image of a cloud of particles on the surface of a turbulent body of water. The

particles, which are ~ 10 um in diameter, were initially dispersed uniformly over the surface.
This image was captured 100 ms later. The scale below the figure is in cm.
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Fig. 2. Second moment of the mean square longitudinal velocity difference as a function of
separation r. Upper curve: 1.0 cm below the surface; lower curve: at the surface, z=0. The
solid line is the Kolmogorov prediction.

Figure 2 is a log-log plot of the second order structure function D,(r)
at the surface, z=0, (lower curve) and below the surface at z=1 cm (upper
curve). The Reynolds numbers Re, at z=0 and z=1 cm were 93 and 120
respectively. At the surface analysis of the velocity fields yield a value for
the compressibility of ¥ =0.5, and in the bulk, the Kolmogorov dissipative
scale n = (v*/€)'/* is estimated to be 0.1 mm. Here € is found using the
following relation. € = 157{(dv(x)/dx)*), where 7 is the viscosity of water
(1 cp). From this figure one sees that the data exhibit scaling behavior in
the interval 2 < r < 60 mm with a slope very close to 2/3 (the solid line in
the figure), as expected for bulk three-dimensional turbulence. Thus, the
strong compressibility and the absence of energy conservation in the iner-
tial range appears to have no effect on this scaling exponent. On the other
hand computer simulations of higher moments D,(r) and Dy(r) at the
surface show much stronger intermittency than in the bulk.®

The presence of even small waves affect the illumination at the surface.
This fluctuating intensity makes it difficult to accurately track individual
floating particles for an adequate length of time. Therefore we followed an
alternative procedure for these measurements. Larger, (200 um) hollow
glass spheres were initially spread uniformly on the surface and were used
to measure the local velocity field. We then followed the motion of virtual
particles initially placed on a grid. They were then allowed to follow the
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Fig. 3. Single-particle diffusion on the surface. The solid lines have slopes corresponding to
ballistic motion (slope=2) and, at large d, the slope is close to that of the Brownian, which is
unity.

measured velocity field, v,(x, y, 0, t) and v,(x, y, 0, 7). The virtual particles
are ideal in that they have no inertia. This scheme introduces some sys-
tematic error since the virtual particle velocity is extrapolated from the real
velocity field. However the method is very robust to any change in the
parameters used to determine the velocity of these particles. Figure 3 is a
plot of the single-particle diffusion, d*(¢) = {[x(¢)—x(0)]*>. All of the
measurements are at r>#. Very strong projectile motion is seen in the
initial interval of ballistic motion 0.4 < d <9 mm. This scaling persists for a
decade beyond the estimated viscous subrange #=0.1 mm. The slope
decreases smoothly out to d ~ 50 mm, where the motion becomes uncorre-
lated, that is d*(¢) oc ¢ (a better fit to the data is a line of slope 0.9 shown in
the figure).

For the first time Richardson diffusion was measured in this compres-
sible system. According to the ideas of Richardson and Kolmogorov!® !V
the mean squared separation of particle pairs, {(R*(#)> = {[R(t)— R(0)]*>
oc t%, in the inertial range a=3. Under the same assumptions {(R*(¢))
should grow exponentially in the dissipative range. As already noted values
of R less than # were inaccessible in this experiment, but it was possible to
measure with considerable precision {(R*(¢)) for over 3 decades in separa-
tion. Figure 4 is a plot of (R*(¢)», where all particle pairs were initially
separated by 3 mm. The thin line of slope 1.65 fits our data rather well for
over a decade of R. We lack an understanding of why this slope is roughly
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Fig. 4. Growth of the mean square displacement of particles pairs. The initial particle
separation is R = 3 mm.

half of the expected value of a = 3, but it certainly must be connected with
the strong compressibility at the surface and particle trapping.

Measurements of R?(¢) were averaged over 27 runs. In each run
roughly a thousand virtual particle pairs were tracked for up to 10s at a
data collection rate of 100 Hz. In the individual runs, the slope varied
between 1.6 and 1.9, with average being 1.7 and the standard deviation
o =0.1. The largest measured pair separation was 20 mm, still within the
integral scale /, ~ 30 mm, which explains why random Brownian diffusion
{R*(t)) oc t is not seen. Particle trapping and the finite area of measure-
ment prevent tracking particle separations to even larger values of R.

4. SUMMARY

Particles that float on the surface of an incompressible fluid, sample
only the horizontal velocity components of the underlying turbulent flow
and hence form a strongly compressible system. The upwellings and
“downwelling” of the flow produce the spatial localization of the floaters,
seen in Fig. 1.

The effect of this compressibility, which is probably best revealed by
measuring statistics of the particle surface density, as in Fig. 1, should also
be apparent in measurements of the velocity field as revealed in the struc-
ture functions D,(r) and the time variation of particle pair separations
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{R*(t)>. Our laboratory experiments and the computer simulations of
Eckhardt and Schumacher show that D,(r) scales as in 3D turbulence, but
the computer simulations show that higher moments of velocity differences
display stronger intermittency than in 3D turbulence. This effect has yet to
be verified in the laboratory.

As for Richardson diffusion, we see self-similarity over a wide range
separations, but the exponent a in the expression (R?*(¢)) oc t* is much
smaller than the Richardson result, a = 3, contrary to the computer simu-
lations of Eckhardt and Schumacher. One might expect that large com-
pressibility would diminish @, which is consistent with the experimental
result, a ~ 1.7, for measurements where R is in the inertial range (For R
much larger than the integral scale of the turbulence, /, ~ 3 cm, the relative
motion the particles should be random, making a=1/2).
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